

MAT 228 – LINEAR ALGEBRA

3 hrs./wk. – 3 cr.

1/2020 BEGINNING SPRING 2020

<u>Catalog Description</u>: Selected topics including systems of linear equations, matrices and determinants, vector and inner product spaces, linear transformations, eigenvalues and eigenvectors, with applications from a variety of disciplines.

Prerequisite: MAT 132 (grade of "C" or better).

Text: Larson, Ron, Elementary Linear Algebra, 8th ed. (Brooks/Cole, Cengage Learning).

C ... 11 . 1.

Supplementary Materials: "Web Assign"

		Synabus
Period	Text Chapter	Topics
1 - 2	1.1 – 3	Introduction to systems of linear equations; Gauss and Gauss-Jordan
		elimination; applications
3	2.1 - 2	Operations with matrices: addition, multiplication; properties of
		matrix operations
4-5	2.3 - 5	Inverse of a matrix; elementary matrices; applications of matrix
		operations
6		Test no. 1
7	3.1 – 3	Determinant of a matrix; evaluation
8	3.4	Properties of determinants
9	4.1 - 2	Vectors in R ⁿ . Vectors spaces
10	4.3 - 4	Subspaces of vector spaces; spanning sets, linear independence
11	4.5 - 6	Basis and dimensions; rank of a matrix, systems of linear equations
12	4.7 - 8	Coordinates and changes of basis; applications of vector spaces
13		Test no. 2
14	5.1 - 2	Length and dot product in R ⁿ , inner product spaces
15	5.3	Orthonormal bases, Gram-Schmidt Process
16-17	5.4	Mathematical models and least-square analysis
18 - 19	5.5	Application of inner spaces
20		Test no. 3
21 - 22	6.1 – 2	Introduction to linear transformations, kernel and range
23 - 24	6.3 – 5	Matrices, linear transformations, similar matrices, applications
25 - 26	7.1 - 2	Eigenvalues, eigenvectors, matrix diagonalization
27 - 28	7.3 – 7.4	Symmetric matrices, orthogonal diagonalization, Applications of
		eigenvalues and eigenvectors
29 - 30		Final Exam

Students are expected to adhere to the policies of the County College of Morris. These can be accessed at www.ccm.edu/academics/academic-policies/.

Statement of Course LEARNING OUTCOMES

- Identify and solve linear systems of equations using Gaussian elimination
- **Define** and **manipulate** matrices and **apply** factorization techniques
- Define and utilize determinants and apply them to solve systems of equations using Cramer's Rule
- Explain and apply the Least-Squares approximation process
- Define, describe and interpret vector spaces, and define and apply linear transformations between spaces
- **Define**, **interpret** and **calculate** eigenvalues and eigenvectors