Department: Mathematics

Course Name: MAT-228 Linear Algebra

Date Updated: 2/2022
Credit Hours/week: 3 hrs./wk. - 3 cr.

Catalog Description: Selected topics including systems of linear equations, matrices and determinants, vector and inner product spaces, linear transformations, eigenvalues and eigenvectors, with applications from a variety of disciplines.

Prerequisite: MAT 132 (grade of "C" or better).
Text: Larson, Ron, Elementary Linear Algebra, 8th ed. (Brooks/Cole, Cengage Learning).
Supplementary Material: "Web Assign"
Syllabus:

Period	Text Sections	Topics
$1-2$	$1.1-3$	Introduction to systems of linear equations; Gauss and Gauss-Jordan elimination; applications
3	$2.1-2$	Operations with matrices: addition, multiplication; properties of matrix operations
$4-5$	$2.3-5$	Inverse of a matrix; elementary matrices; applications of matrix operations
6		Test 1
7	$3.1-3$	Determinant of a matrix; evaluation
8	3.4	Properties of determinants
9	$4.1-2$	Vectors in R^n. Vectors spaces
10	$4.3-4$	Subspaces of vector spaces; spanning sets, linear independence
11	$4.5-6$	Basis and dimensions; rank of a matrix, systems of linear equations
12	$4.7-8$	Coordinates and changes of basis; applications of vector spaces
13		Test 2
14	$5.1-2$	Length and dot product in R^n, inner product spaces
15	5.3	Orthonormal bases, Gram-Schmidt Process
$16-17$	5.4	Mathematical models and least-square analysis
$18-19$	5.5	Application of inner spaces
20		Test 3
$21-22$	$6.1-2$	Introduction to linear transformations, kernel and range
$23-24$	$6.3-5$	Matrices, linear transformations, similar matrices, applications
$25-26$	$7.1-2$	Eigenvalues, eigenvectors, matrix diagonalization
$27-28$	$7.3-4$	Symmetric matrices, orthogonal diagonalization, Applications of eigenvalues and eigenvectors
$29-30$		Final Exam

Students are expected to adhere to the policies of the County College of Morris. These can be accessed at: (insert link here)

Statement of Expected Course LEARNING OUTCOMES

- Identify and solve linear systems of equations using Gaussian elimination
- Define and manipulate matrices and apply factorization techniques
- Define and utilize determinants and apply them to solve systems of equations using Cramer's Rule
- Explain and apply the Least-Squares approximation process
- Define, describe and interpret vector spaces, and define and apply linear transformations between spaces
- Define, interpret and calculate eigenvalues and eigenvectors

