

MAT 132 – ANALYTIC GEOMETRY AND CALCULUS II

4 hrs./wk. - 4 cr.

<u>Catalog Description</u>: A continuation of Analytic Geometry and Calculus I, which covers the calculus of inverse trigonometric functions, methods of integration, analytic geometry in the plane including polar coordinates and conic sections, hyperbolic functions, sequences and series, and parametric equations.

Prerequisite: MAT 131 (grade of "C" or better) or equivalent.

<u>Text:</u> Larson, Ron, and Bruce H. Edwards. *Calculus of a Single Variable: Early Transcendental Functions*, 7th ed. Cengage Learning, 2019

<u>Syllabus</u>		
Period	Text Sections	Topics
1 - 2	1-5, 5.9	Calculus 1 Review, Hyperbolic Functions
3 - 4	6.2 - 6.3	Growth and Decay, Separation of Variables
5	7.1	Area between curves
6 - 8	7.2 - 7.3	Disk Method and Cross Sections, Shell Method
9	7.4	Arc Length and Surface Area
10		Test 1
11	8.1	Basic Integration Rules
12	8.2	Integration by Parts
13	8.3	Trig Integrals
14	8.4	Trig Substitution
15	8.5	Partial Fractions
16	5.6	L'Hopital Rule
17	8.8	Improper Integrals
18		Test 2
19 - 20	9.1	Sequences
21	9.2	Series and Convergence
22	9.3	Integral Test and p-Series
23	9.4	Comparison Tests
24	9.5	Alternation Series
25	9.6	Ratio and Root Tests
26	9.7	Taylor Polynomials
27	9.8	Power Series
28	9.9	Representation of Functions by Power Series
29	9.10	Taylor and Maclaurin Series
30		Test 3
31 - 32	10.1	Conic Sections
33	10.2	Plane Curves and Parametric Equations
34	10.3	Parametric Equations and Calculus
35 - 36	10.4	Polar Coordinates and Polar Graphs
37 - 38	10.5	Area and Arc Length in Polar Coordinates
39	10.6	Polar Equations of Conics
40		Test 4
41 - 42	7.5 - 7.7	(Time Permitting) Work, Centers of Mass, Fluid Pressure and Force
43		Final Review
44 - 45		2-day Final Exam

Students are expected to adhere to the policies of the County College of Morris. These can be accessed at www.ccm.edu/academics/academic-policies/.

4/2020 BEGINNING FALL 2020

Statement of Course LEARNING OUTCOMES

- Choose and apply appropriate integration techniques
- Model and solve problems including areas, volumes, arc lengths, surface areas, and work
- Determine whether a series converges or diverges by selecting an appropriate convergence test and applying it
- Use power series to represent functions and create Maclaurin and Taylor series for familiar transcendental functions
- Identify and graph conic sections
- Sketch graphs of parametric and polar equations, and **apply** derivatives and integrals in parametric and polar forms to solve problems including arc length and surface area